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The stereochemistry of compounds 6, 8, and 10 was confirmed 
by NOE experiments. The structure of the /3-functionalized 
compound 5 is not well defined due to its carbenoid nature, but 
its chemical behavior suggests a trans relationship for the lithium 
and the isopropoxy groups. Recently, we have prepared and 
characterized examples of 2-functionalized lithioalkanes which 
are rare and unstable species.9 Some /3-functionalized lithio-
alkenes have been reported,10 but the trans compounds undergo 
^-elimination reactions except in a few cases in which a halogen 
is present in the a-position." 

The vinylic iodine present in compound 5 can undergo an 
exchange reaction with another organolithium reagent yielding 
the /3-functionalized 1,1 -dilithio-1 -alkene. The consecutive 
treatment of a solution of 5a with methyllithium12 and conventional 
electrophiles affords the disubstitution products 16-20 (Scheme 
II). 

The THF solutions of 15 are stable at -70 0C, and they give 
the same results shown in Scheme II upon treatment with elec­
trophiles after 10 h at this temperature. 

The yields and purities of compounds 3, 6-13, and 16-20 were 
determined by GC, and the spectral data (IR, 1H NMR, 13C 
NMR, and MS) are in accordance with the proposed structures.13 

The derivatives carrying an isopropoxy group are easily hydrolyzed 
to the corresponding carbonyl systems.14 

Among all the products derived from lithioalkenes 5 and 15 
we can emphasize the synthetic interest of the unconjugated diene 
9, the tetrasubstituted alkene 10, the 1,2,3-trifunctionalized 
compounds 11 and 12 (with very different functional groups), the 
masked functionalized ketene 19 and the /3-tricarbonyl compound 
20. 

These results show the possibility of the preparation of /3-
functionalized 1-iodo-l-lithio-l-alkenes and 1,1-dilithio-1-alkenes 
and their use as synthons of the type R R ' C = C < or RCOCH< 
after hydrolysis. 
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A characteristic feature common to many naturally occurring 
quassinoids is the presence in ring A of a l/3-hydroxy-2-oxo-A3'4 

olefin unit bearing a methyl group at C(4) [cf. klaineanone (I)].2 

1 QUASSlN 

This structural fragment is essential for the rich array of phar­
macological properties associated with quassinoids.3 Since the 
report describing the successful completion of the total synthesis 
of quassin in 1980,4 there has not been a single published account 
detailing a total synthesis of a complex quassinoid. This is par­
ticularly surprising in view of the numerous synthetic groups 
worldwide who have been working on this problem for more than 
15 years.5 The lack of success to date has been in large part due 
to problems associated with elaboration of the ring A function­
ality.6 Reported herein is the first total synthesis of a highly 
oxygenated quassinoid, (±)-klaineanone (I),7 possessing the 1/3-
hydroxy-2-oxo-A3,4 olefin functionality in ring A. It is of interest 
to note that of the ten stereocenters present in klaineanone, nine 
are contiguous. 

The preparation of 1 commences with tetracyclic ketone 2 
prepared previously4 in connection with our synthesis of (±)-
quassin. While compound 2 possesses all the carbon atoms needed 
for the construction of 1, the configuration of C(9), which was 
established by a Diels-Alder strategy, requires inversion of con­
figuration. Thus ketone 2 was transformed (92% yield) into enone 
3, mp 172.5-174.0 0C, via the corresponding A11,12 enol silyl ether 
via a two-step process involving reaction of the lithium enolate 
of 2 [LDA, THF, -78 0C (15 min) — 0 0C (1 h) — -78 0C] 
with 3.0 equiv of trimethylchlorosilane [-78 0 C (30 min) —• 0 
0C (30 min)] and subsequent exposure (45 0C, 48 h) of the A11'12 

enol silyl ether in acetonitrile to 1.3 equiv of palladium acetate 
and 4.0 equiv of sodium carbonate. Enone 3 was subjected to 
Birch reduction in liquid ammonia at -78 °C with 10 equiv of 
lithium metal in the presence of 0.9 equiv of tert-buty\ alcohol. 
The resulting lithium enolate was trapped [0 0C (30 min) —- room 
temperature (3 h)] with 3.0 equiv of diethyl phosphorochloridate 
in tetrahydrofuran-Ar,A',Ar',A"-tetramethylethylenediamine (2:1) 
giving rise to enol phosphate 4, mp 102.0-102.5 0C, in 80% overall 
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perature (2.5 h)] of tetracyclic olefin 11 gave rise to crystalline 
o. 

O OMe 

4 X = OPO(OEt)2 

5 X - H 

6 X = OMe1 Y = H 

7 X = OH, Y = H 

yield. Reductive elimination [Li (100 equiv), EtNH2, r-BuOH 
(1.0 equiv), THF] of the phosphate group proceeded smoothly 
affording tetracyclic olefin 5 in 92% yield. 

Prior to elaboration of the ring A functionality, the protected 
lactol in 5 was converted in 77% overall yield into the tetracyclic 
lactone 6, mp 174-176 0C, via a two-step sequence (1. 5% HCl, 
THF, 5 h; 2. Jones oxidation, O 0C, 30 min). Cleavage of the 
methyl ether in compound 6 required prolonged exposure (70 h) 
of 6 to boron trifluoride etherate/ethanedithiol (1.0:1.7) containing 
a catalytic amount of concentrated hydrochloric acid in order to 
realize a 70% yield of crystalline tetracyclic alcohol 7, mp 
167.5-169.0 0C. Oxidation [PCC (3.0 equiv), NaOAc (2.5 equiv), 
CH2Cl2, 0 0C (30 min) — room temperature (30 min)] of 7 
provided in 99% yield ketone 8, mp 180.5-181.0 "C. 

The required ring A functionality was introduced at this stage 
of the synthesis since all attempts to elaborate ring A in the 
presence of the C(11), C(12) trans diaxial vicinal diol unit failed. 
Tetracyclic ketone 8 was converted (82% yield) into enone 9, mp 
206.5-207.5 0C, via a three-step sequence involving enol silyl ether 
formation [HMDS (7 equiv), Et3N (7 equiv), TMSI (5 equiv), 
ClCH2CH2Cl, -23 0C — room temperature (3 h)], trapping of 
the enol silyl ether with phenylselenenyl chloride in tetrahydrofuran 
at 0 0C (20 min), and oxidation (H2O2, pyridine, 0 0C, 1.5 h) 
of the corresponding keto selenide which underwent loss of benzene 
selenenic acid. Elaboration of the ring A functionality required 
transformation of enone 9 into the corresponding silyl dienol ether. 

HO. 

Toward this end, enone 9 was treated with 15 equiv of hexa-
methyldisilazane, 15 equiv of triethylamine, and 10 equiv of 
trimethylsilyl iodide in 1,2-dichloroethane initially at -23 0C and 
then at ambient temperature for 13 h. Peracid oxidation8 

[MCPBA (1.2 equiv), NaHCO3 (1.5 equiv), CH2Cl2, -23 0C, 
45 min] of the corresponding silyl dienol ether followed by 
treatment with 3.0 equiv of a 1.0 M solution of tetrabutyl-
ammonium fluoride in tetrahydrofuran for 1 h at -23 0C provided, 
in 50% overall yield from 9, tetracyclic a-hydroxy ketone 10. 
Base-catalyzed tautomerism of 10 into 11, mp 227-230 0C, was 
realized in 75% yield by treatment of a 0.02 M solution of 10 in 
methanol with 1.2 equiv of finely powdered potassium carbonate. 
Epoxidation [MCPBA, CH2Cl2, 0 0C (35 min) — room tem-

(8) Cf. Rubottom, G. M.; Gruber, J. M. /. Org. Chem. 1978, 43, 1599. 

11 12 

epoxide 12, mp 217.5-219.5 0C, as the sole product in 80% yield. 
Acid-catalyzed opening of epoxide 12 with 23% perchloric acid 
in tetrahydrofuran-methylene chloride, 15:1, at ambient tem­
perature (36 h) produced in 76% yield synthetic (±)-klaineanone 
(1), mp 234-239 0C, identical with an authentic sample by 
500-MHz 1H NMR, IR, and silica gel TLC analysis in several 
solvent systems.9 Completion of the synthesis of 1 confirms the 
structural assignment put forth by Polonsky and Zylber7 for 
klaineanone nearly 25 years ago. Since that time, the structure 
of 1 has rested upon limited spectroscopic data and its conversion 
into quassin. The synthesis of racemic klaineanone is noteworthy 
in that (a) the transformation of tetracyclic ketone 2 into 1 requires 
no protecting groups, (b) the ring A l/3-hydroxy-2-oxo-A3'4 olefin 
functionality is surprisingly stable (cf. 12 —* 1) contrary to reports 
in the literature, and (c) the base-catalyzed tautomerism of a-
hydroxy ketone 10 into 11 proceeds with remarkable efficiency 
despite the opportunity for numerous undesired side products. 
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Nuclear magnetic resonance (NMR) spectroscopy has recently 
become a powerful tool in the study of solid zeolite catalysts via 
magic angle spinning (MAS) procedures.' The ordering of Si4+ 

and Al3+ in zeolite frameworks and the effects of dealumination 
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